Олимпиадные задачи по информатике с решениями
В этом разделе будут размещаться олимпиадные задачи по
информатике с решениями за прошлые годы. Многие олимпиадные
задачи давались без названий, таким задачам я сам дам название.
Задачи буду размещать либо с полным условием задач на этой
странице, либо с частью условия, чтобы вам было проще
сориентироваться в поиске решения нужной задачи.
Наибольшее отношение. Найдите наибольшее
значение отношения трехзначного числа к сумме его цифр.
Решение
задачи>>
Вычисление суммы цифр строки. Дана строка,
состоящая из символов, каждый из которых является знаком «+» или
цифрой, начинающаяся и заканчивающаяся цифрой. Если в строке
встречается сочетание «++», то выдать сообщение об ошибке, в
противном случае вычислить получившуюся сумму.
Решение задачи>>
Острова. Каждый элемент квадратной матрицы
размеренности N x N равен нулю, либо единице. Найдите количество
«островов», образованных единицами. Под «островом» понимается
группа единиц (либо одна единица), со всех сторон окруженная
нулями (или краями матрицы). Единицы относятся к одному
«острову», если из одной из них можно перейти к другой
«наступая» на единицы, расположенные в соседних клетках.
Соседними являются клетки, граничащие по горизонтали или
вертикали.
Решение задачи>>
Черно-белая графика. Одна из базовых задач
компьютерной графики – обработка черно-белых изображений.
Изображения можно представить в виде прямоугольников шириной w и
высотой h, разбитых на w×h единичных квадратов, каждый из
которых имеет либо белый, либо черный цвет. Такие единичные
квадраты называются пикселями. В памяти компьютера сами
изображения хранятся в виде прямоугольных таблиц, содержащих
нули и единицы.
Полное условие и решение задачи>>
Клавиатура. Всем известно, что со временем
клавиатура изнашивается, и клавиши на ней начинают залипать.
Конечно, некоторое время такую клавиатуру еще можно
использовать, но для нажатий клавиш приходиться использовать
большую силу.
Полное условие и решение задачи>>
Газон. Фермер Иван с юности следит за своим
газоном. Газон можно считать плоскостью, на которой в каждой
точке с целыми координатами растет один пучок травы.В одно из
воскресений Иван воспользовался газонокосилкой и постриг
некоторый прямоугольный участок газона. Стороны этого участка
параллельны осям координат, а две противоположные вершины
расположены в точках (x1, y1) и (x2, y2). Следует отметить, что
пучки травы, находящиеся на границе этого прямоугольника, также
были пострижены.
Полное условие и решение задачи>>
Вырубка деревьев. Король Флатландии решил
вырубить некоторые деревья, растущие перед его дворцом. Деревья
перед дворцом короля посажены в ряд, всего там растет N
деревьев, расстояния между соседними деревьями одинаковы. После
вырубки перед дворцом должно остаться M деревьев, и расстояния
между соседними деревьями должны быть одинаковыми. Помогите
королю выяснить, сколько существует способов вырубки деревьев.
Решение
задачи>>
|